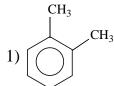
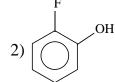
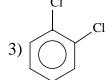

1) 1s	40.	which of the follow	wing does not nave spn	ericai as weii as angui	ar node ?			
partial pressure of \mathbf{H}_2 is 1) 4.8 atm 2) 2.4 atm 3) 5 atm 4) 7.5 atm 48. pH of a solution is changed from 2 to 5. What has been done to the solution? 1) 3 times dilution 2) 3 times concentration 3) 100 times concentration 4) 1000 times dilution 49. The enthalpy of vaporization of benzene is 30.8 kJ mol ⁻¹ at its boiling point (80.1 $^{\circ}$ C). Calculate the entropy change in the condensation process. 1) +87.3 JK ⁻¹ mol ⁻¹ 2) -87.3 JK ⁻¹ mol ⁻¹ 3) 240 JK ⁻¹ mol ⁻¹ 4) -240 JK ⁻¹ mol ⁻¹ 50. 2-3% gypsum is added to sample for 1) increasing hardness 2) decreasing setting time 4) making is soft 51. AlCl ₃ and FeCl ₃ can be separated from their mixture by using 1) NH ₄ OH 2) NaOH 3) H ₂ O 4) magnetic method 52. Which of the following are correct w.r.t D ₂ O? 1) It can be used as moderator 2) Its m.p. is 3.82° C 3) Its b.p. is 101.42° C 4) All of these 53. 0.5 molal aqueous solutions of each of NaCl, BaCl ₃ and AlCl ₃ have boiling points T ₁ , T ₂ and T ₃ respectively. Which of the following is correct? 1) T ₁ > T ₂ > T ₃ 2) T ₃ > T ₂ > T ₁ 3) T ₂ > T ₁ 5 T ₃ 4) T ₁ > T ₃ > T ₂ 54. i) $P + Q \rightleftharpoons A(\text{fast})$ ii) $A + R \rightarrow B(\text{slow})$ iii) $B + Q \rightarrow S + T(\text{fast})$ are the elementary steps of the reactions, $2P + Q + 2R \rightarrow S + T$ The rate law of the reaction is: 1) $\mathbf{r} = \mathbf{k} [P][Q]$ 2) $\mathbf{r} = \mathbf{k} [P]^2[Q][R]^3$ 3) $\mathbf{r} = \mathbf{k} [P][Q][R]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) K ₂ HgI ₄ 2) H ₂ N - Hg - O - Hg - I 3) Ca ₃ P ₂ + CaC ₂ 4) (NH ₄) ₂ MoO ₄		1) 1s	2) 2p	3) 3d	4) 5f			
1) 4.8 atm 2) 2.4 atm 3) 5 atm 4) 7.5 atm 48. pH of a solution is changed from 2 to 5. What has been done to the solution? 1) 3 times dilution 2) 3 times concentration 3) 100 times concentration 4) 1000 times dilution 49. The enthalpy of vaporization of benzene is 30.8 kJ mol ⁻¹ at its boiling point (80.1°C). Calculate the entropy change in the condensation process. 1) +87.3 JK ⁻¹ mol ⁻¹ 2) -87.3 JK ⁻¹ mol ⁻¹ 3) 240 JK ⁻¹ mol ⁻¹ 4) -240 JK ⁻¹ mol ⁻¹ 50. 2-3% gypsum is added to sample for 1) increasing hardness 2) decreasing setting time 3) increasing setting time 4) making is soft 51. AlCl ₃ and FeCl ₃ can be separated from their mixture by using 1) NH ₄ OH 2) NaOH 3) H ₂ O 4) magnetic method 52. Which of the following are correct w.r.t D ₂ O? 1) It can be used as moderator 2) Its m.p. is 3.82°C 3) Its b.p. is 101.42°C 4) All of these 53. 0.5 molal aqueous solutions of each of NaCl, BaCl ₂ and AlCl ₃ have boiling points T ₁ , T ₂ and T ₃ respectively. Which of the following is correct? 1) T ₁ > T ₂ > T ₃ 2) T ₃ > T ₂ > T ₁ 3) T ₂ > T ₁ > T ₃ 4) T ₁ > T ₃ > T ₂ 54. i) P+Q \rightleftharpoons A(fast) ii) A+R \Rightarrow B(slow) iii) B+Q \Rightarrow S+T (fast) are the elementary steps of the reactions, 2P+Q+2R \Rightarrow S+T The rate law of the reaction is: 1) $\mathbf{r} = \mathbf{k} [\mathbf{P}][\mathbf{Q}]$ 2) $\mathbf{r} = \mathbf{k} [\mathbf{P}]^2 [\mathbf{Q}][\mathbf{R}]^{3/3}$ 3) $\mathbf{r} = \mathbf{k} [\mathbf{P}]^{1/2} [\mathbf{Q}][\mathbf{R}]^{1/3}$ 4) $\mathbf{r} = \mathbf{k} [\mathbf{P}][\mathbf{Q}][\mathbf{R}]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) K ₂ Hgl ₄ 2) H ₂ N-Hg-O-Hg-1 3) Ca ₃ P ₂ +CaC ₂ 4) (NH ₄) ₂ MoO ₄	47.	Equal masses of H ₂ and He gases mixed in vessel recorded a pressure of 7.5 atm. The						
48. pH of a solution is changed from 2 to 5. What has been done to the solution? 1) 3 times dilution 2) 3 times concentration 3) 100 times concentration 4) 1000 times dilution 49. The enthalpy of vaporization of benzene is 30.8 kJ mol ⁻¹ at its boiling point (80.1°C). Calculate the entropy change in the condensation process. 1) +87.3 JK ⁻¹ mol ⁻¹ 2) -87.3 JK ⁻¹ mol ⁻¹ 3) 240 JK ⁻¹ mol ⁻¹ 4) -240 JK ⁻¹ mol ⁻¹ 50. 2-3% gypsum is added to sample for 1) increasing hardness 2) decreasing setting time 4) making is soft 51. AlCl ₃ and FeCl ₃ can be separated from their mixture by using 1) NH ₄ OH 2) NaOH 3) H ₂ O 4) magnetic method 52. Which of the following are correct w.r.t D ₂ O? 1) It can be used as moderator 2) Its m.p. is 3.82° C 3) Its b.p. is 101.42° C 4) All of these 53. 0.5 molal aqueous solutions of each of NaCl, BaCl ₂ and AlCl ₃ have boiling points T ₁ , T ₂ and T ₃ respectively. Which of the following is correct? 1) T ₁ > T ₂ > T ₃ 2) T ₃ > T ₂ > T ₁ 3) T ₂ > T ₁ > T ₃ 4) T ₁ > T ₃ > T ₂ 54. i) P+Q \rightleftharpoons A(fast) ii) A+R \Rightarrow B(slow) iii) B+Q \Rightarrow S+T(fast) are the elementary steps of the reactions, 2P+Q+2R \Rightarrow S+T The rate law of the reaction is: 1) $\mathbf{r} = \mathbf{k} [\mathbf{P}] [\mathbf{Q}]$ 2) $\mathbf{r} = \mathbf{k} [\mathbf{P}]^2 [\mathbf{Q}] [\mathbf{R}]^3$ 3) $\mathbf{r} = \mathbf{k} [\mathbf{P}]^{1/2} [\mathbf{Q}] [\mathbf{R}]^{1/3}$ 4) $\mathbf{r} = \mathbf{k} [\mathbf{P}] [\mathbf{Q}] [\mathbf{R}]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) K ₂ Hg ₄ 2) H ₂ N - Hg - O - Hg - I 3) Ca ₃ P ₂ + CaC ₂ 4) (NH ₄) ₂ MoO ₄			fH_2 is					
1) 3 times dilution 3) 100 times concentration 4) 1000 times dilution 49. The enthalpy of vaporization of benzene is 30.8 kJ mol ⁻¹ at its boiling point (80.1°C). Calculate the entropy change in the condensation process. 1) +87.3 JK ⁻¹ mol ⁻¹ 2) -87.3 JK ⁻¹ mol ⁻¹ 3) 240 JK ⁻¹ mol ⁻¹ 4) -240 JK ⁻¹ mol ⁻¹ 50. 2-3% gypsum is added to sample for 1) increasing hardness 2) decreasing setting time 3) increasing setting time 4) making is soft 51. AlCl ₃ and FeCl ₃ can be separated from their mixture by using 1) NH ₄ OH 2) NaOH 3) H ₂ O 4) magnetic method 52. Which of the following are correct w.r.t D ₂ O? 1) It can be used as moderator 2) Its m.p. is 3.82° C 3) Its b.p. is 101.42° C 4) All of these 53. 0.5 molal aqueous solutions of each of NaCl, BaCl ₂ and AlCl ₃ have boiling points T ₁ , T ₂ and T ₃ respectively. Which of the following is correct? 1) T ₁ > T ₂ > T ₃ 2) T ₃ > T ₂ > T ₁ 3) T ₂ > T ₁ 3 4) T ₁ > T ₃ > T ₂ 54. i) $P + Q \rightleftharpoons A(fast)$ ii) $A + R \rightarrow B(slow)$ iii) $B + Q \rightarrow S + T(fast)$ are the elementary steps of the reactions, $2P + Q + 2R \rightarrow S + T$ The rate law of the reaction is: 1) $r = k[P][Q]$ 2) $r = k[P]^2[Q][R]^3$ 3) $r = k[P]^{1/2}[Q][R]^{1/3}$ 4) $r = k[P][Q][R]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) K_2HgI_4 2) $H_2N - Hg - O - Hg - I$ 3) $Ca_3P_2 + CaC_2$ 4) $(NH_4)_2 MoO_4$		1) 4.8 atm	2) 2.4 atm	3) 5 atm	4) 7.5 atm			
3) 100 times concentration 4) 1000 times dilution 49. The enthalpy of vaporization of benzene is 30.8 kJ mol ⁻¹ at its boiling point (80.1°C). Calculate the entropy change in the condensation process. 1) +87.3 JK ⁺ mol ⁻¹ 2) -87.3 JK ⁻¹ mol ⁻¹ 3) 240 JK ⁺ mol ⁻¹ 4) -240 JK ⁺ mol ⁻¹ 50. 2-3% gypsum is added to sample for 1) increasing hardness 2) decreasing setting time 3) increasing setting time 4) making is soft 51. AlCl ₃ and FeCl ₃ can be separated from their mixture by using 1) NH ₄ OH 2) NaOH 3) H ₂ O 4) magnetic method 52. Which of the following are correct w.r.t D ₂ O? 1) It can be used as moderator 2) Its m.p. is 3.82°C 3) Its b.p. is 101.42 °C 4) All of these 53. 0.5 molal aqueous solutions of each of NaCl, BaCl ₂ and AlCl ₃ have boiling points T ₁ , T ₂ and T ₃ respectively. Which of the following is correct? 1) T ₁ > T ₂ > T ₃ 2) T ₃ > T ₂ > T ₁ 3) T ₂ > T ₁ > T ₃ 4) T ₁ > T ₃ > T ₂ 54. i) P+Q \rightleftharpoons A(fast) ii) A+R \rightarrow B(slow) iii) B+Q \rightarrow S+T (fast) are the elementary steps of the reactions, $2P+Q+2R\rightarrow S+T$ The rate law of the reaction is: 1) $\mathbf{r} = \mathbf{k} [P] [Q]$ 2) $\mathbf{r} = \mathbf{k} [P]^2 [Q] [R]^3$ 3) $\mathbf{r} = \mathbf{k} [P]^{1/2} [Q] [R]^{1/3}$ 4) $\mathbf{r} = \mathbf{k} [P][Q][R]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) K ₂ HgI ₄ 2) H ₂ N-Hg-O-Hg-I 3) Ca ₃ P ₂ +CaC ₂ 4) (NH ₄) ₂ MoO ₄	48.	pH of a solution is changed from 2 to 5. What has been done to the solution?						
49. The enthalpy of vaporization of benzene is 30.8 kJ mol ⁻¹ at its boiling point (80.1°C). Calculate the entropy change in the condensation process. $1) + 87.3 \text{ JK}^{-1} \text{ mol}^{-1} 2) - 87.3 \text{ JK}^{-1} \text{ mol}^{-1} 3) 240 \text{ JK}^{-1} \text{ mol}^{-1} 4) - 240 \text{ JK}^{-1} \text{ mol}^{-1}$ 50. 2-3% gypsum is added to sample for $1) \text{ increasing hardness} \qquad 2) \text{ decreasing setting time}$ 3) increasing setting time 4) making is soft 51. AlCl ₃ and FeCl ₃ can be separated from their mixture by using $1) \text{ NH}_4 \text{ OH} \qquad 2) \text{ NaOH} \qquad 3) \text{ H}_2 \text{ O} \qquad 4) \text{ magnetic method}$ 52. Which of the following are correct w.r.t D ₂ O? $1) \text{ It can be used as moderator} \qquad 2) \text{ Its m.p. is } 3.82^{\circ}\text{C}$ 3) Its b.p. is 101.42°C 4) All of these 53. 0.5 molal aqueous solutions of each of NaCl, BaCl ₂ and AlCl ₃ have boiling points T ₁ , T ₂ and T ₃ respectively. Which of the following is correct? $1) \text{ T}_1 > \text{T}_2 > \text{T}_3 \qquad 2) \text{ T}_3 > \text{T}_2 > \text{T}_1 \qquad 3) \text{ T}_2 > \text{T}_1 > \text{T}_3 \qquad 4) \text{ T}_1 > \text{T}_3 > \text{T}_2$ 54. i) $P + Q \rightleftharpoons A(\text{fast})$ ii) $A + R \rightarrow B(\text{slow})$ iii) $B + Q \rightarrow S + T(\text{fast})$ are the elementary steps of the reactions, $2P + Q + 2R \rightarrow S + T$ The rate law of the reaction is: $1) \text{ r} = \text{k} \text{ [P] [Q]} \qquad 2) \text{ r} = \text{k} \text{ [P]}^2 \text{ [Q] [R]}^3 3) \text{ r} = \text{k} \text{ [P]}^{1/2} \text{ [Q]}[R]^{1/3} 4) \text{ r} = \text{k} \text{ [P]}[Q][R]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is $1) \text{ K}_2 \text{ HgI}_4 \qquad 2) \text{ H}_2 \text{ N} - \text{Hg}_2 - O - \text{Hg}_2 - I$ 3) $\text{Ca}_3 P_2 + \text{CaC}_2 \qquad 4) (\text{NH}_4)_2 \text{ MoO}_4$		1) 3 times dilution		2) 3 times concentration				
Calculate the entropy change in the condensation process. 1) +87.3 JK ⁻¹ mol ⁻¹ 2) -87.3 JK ⁻¹ mol ⁻¹ 3) 240 JK ⁻¹ mol ⁻¹ 4) -240 JK ⁻¹ mol ⁻¹ 50. 2-3% gypsum is added to sample for 1) increasing hardness 2) decreasing setting time 3) increasing setting time 4) making is soft 51. AlCl ₃ and FeCl ₃ can be separated from their mixture by using 1) NH ₄ OH 2) NaOH 3) H ₂ O 4) magnetic method 52. Which of the following are correct w.r.t D ₂ O? 1) It can be used as moderator 2) Its m.p. is 3.82° C 3) Its b.p. is 101.42° C 4) All of these 53. 0.5 molal aqueous solutions of each of NaCl, BaCl ₂ and AlCl ₃ have boiling points T ₁ , T ₂ and T ₃ respectively. Which of the following is correct? 1) T ₁ > T ₂ > T ₃ 2) T ₃ > T ₂ > T ₁ 3) T ₂ > T ₁ > T ₃ 4) T ₁ > T ₃ > T ₂ 54. i) P+Q \rightleftharpoons A(fast) ii) A+R \rightarrow B(slow) iii) B+Q \rightarrow S+T(fast) are the elementary steps of the reactions, $2P+Q+2R \rightarrow S+T$ The rate law of the reaction is: 1) $\mathbf{r} = \mathbf{k} [P] [Q]$ 2) $\mathbf{r} = \mathbf{k} [P]^2 [Q] [R]^3$ 3) $\mathbf{r} = \mathbf{k} [P]^{1/2} [Q][R]^{1/3}$ 4) $\mathbf{r} = \mathbf{k} [P][Q][R]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) K ₂ HgI ₄ 2) H ₃ N - H ₂ - O - H ₂ - I 3) Ca ₃ P ₂ + CaC ₂ 4) (NH ₄) ₂ MoO ₄		3) 100 times concer	ntration	4) 1000 times dilution	1			
1) +87.3 JK¹ mol¹ 2) -87.3 JK¹ mol¹ 3) 240 JK¹ mol¹ 4) -240 JK¹ mol¹ 50. 2-3% gypsum is added to sample for 1) increasing hardness 2) decreasing setting time 3) increasing setting time 4) making is soft 51. AlCl₃ and FeCl₃ can be separated from their mixture by using 1) NH₄OH 2) NaOH 3) H₂O 4) magnetic method 52. Which of the following are correct w.r.t D₂O? 1) It can be used as moderator 2) Its m.p. is 3.82° C 3) Its b.p. is 101.42° C 4) All of these 53. 0.5 molal aqueous solutions of each of NaCl, BaCl₂ and AlCl₃ have boiling points T₁, T₂ and T₃ respectively. Which of the following is correct? 1) T₁>T₂>T₃ 2) T₃>T₂>T₁ 3) T₂>T₁>T₃ 4) T₁>T₃>T₂ 54. i) P+Q \rightleftharpoons A(fast) ii) A+R \rightarrow B(slow) iii) B+Q \rightarrow S+T(fast) are the elementary steps of the reactions, $2P+Q+2R \rightarrow S+T$ The rate law of the reaction is: 1) $\mathbf{r} = \mathbf{k} [P][Q]$ 2) $\mathbf{r} = \mathbf{k} [P]^2 [Q][R]^3$ 3) $\mathbf{r} = \mathbf{k} [P]^{1/2} [Q][R]^{1/3}$ 4) $\mathbf{r} = \mathbf{k} [P][Q][R]$ 55. NH₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is $11 \times 2 \times 10^{-1}$ Algebra 11×10^{-1} Algebra	49.							
50. 2-3% gypsum is added to sample for 1) increasing hardness 3) increasing setting time 4) making is soft 51. AICl ₃ and FeCl ₃ can be separated from their mixture by using 1) NH ₄ OH 2) NaOH 3) H ₂ O 4) magnetic method 52. Which of the following are correct w.r.t D ₂ O? 1) It can be used as moderator 2) Its m.p. is 3.82° C 3) Its b.p. is 101.42° C 4) All of these 53. 0.5 molal aqueous solutions of each of NaCl, BaCl ₂ and AICl ₃ have boiling points T ₁ , T ₂ and T ₃ respectively. Which of the following is correct? 1) T ₁ > T ₂ > T ₃ 2) T ₃ > T ₂ > T ₁ 3) T ₂ > T ₁ > T ₃ 4) T ₁ > T ₃ > T ₂ 54. i) $P + Q \rightleftharpoons A(fast)$ ii) $A + R \rightarrow B(slow)$ iii) $B + Q \rightarrow S + T(fast)$ are the elementary steps of the reactions, $2P + Q + 2R \rightarrow S + T$ The rate law of the reaction is: 1) $r = k[P][Q]$ 2) $r = k[P]^2[Q][R]^3$ 3) $r = k[P]^{1/2}[Q][R]^{1/3}$ 4) $r = k[P][Q][R]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) K_2HgI_4 2) $H_2N - Hg - O - Hg - I$ 3) $Ca_3P_2 + CaC_2$ 4) $(NH_4)_2 MoO_4$								
1) increasing hardness 2) decreasing setting time 3) increasing setting time 4) making is soft 51. AlCl, and FeCl, can be separated from their mixture by using 1) NH $_1$ OH 2) NaOH 3) H $_2$ O 4) magnetic method 52. Which of the following are correct w.r.t D_2 O? 1) It can be used as moderator 2) Its m.p. is 3.82° C 3) Its b.p. is 101.42° C 4) All of these 53. 0.5 molal aqueous solutions of each of NaCl, BaCl $_2$ and AlCl $_3$ have boiling points T_1 , T_2 and T_3 respectively. Which of the following is correct? 1) $T_1 > T_2 > T_3$ 2) $T_3 > T_2 > T_1$ 3) $T_2 > T_1 > T_3$ 4) $T_1 > T_3 > T_2$ 54. i) $P + Q \rightleftharpoons A(fast)$ ii) $A + R \rightarrow B(slow)$ iii) $B + Q \rightarrow S + T(fast)$ are the elementary steps of the reactions, $2P + Q + 2R \rightarrow S + T$ The rate law of the reaction is: 1) $r = k[P][Q]$ 2) $r = k[P]^2[Q][R]^3$ 3) $r = k[P]^{1/2}[Q][R]^{1/3}$ 4) $r = k[P][Q][R]$ 55. NH $_3$ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) K_2HgI_4 2) $H_2N - Hg - O - Hg - I$ 3) $Ca_3P_2 + CaC_2$ 4) $(NH_4)_2 MoO_4$				3) 240 JK ⁻¹ mol ⁻¹	4) -240 JK ⁻¹ mol ⁻¹			
3) increasing setting time 4) making is soft 51. AlCl ₃ and FeCl ₃ can be separated from their mixture by using 1) NH ₄ OH 2) NaOH 3) H ₂ O 4) magnetic method 52. Which of the following are correct w.r.t D ₂ O? 1) It can be used as moderator 2) Its m.p. is 3.82° C 3) Its b.p. is 101.42° C 4) All of these 53. 0.5 molal aqueous solutions of each of NaCl, BaCl ₂ and AlCl ₃ have boiling points T ₁ , T ₂ and T ₃ respectively. Which of the following is correct? 1) T ₁ > T ₂ > T ₃ 2) T ₃ > T ₂ > T ₁ 3) T ₂ > T ₁ 3 $+ + + + + + + + + + + + + + + + + + $	50.		_					
51. AlCl ₃ and FeCl ₃ can be separated from their mixture by using 1) NH ₄ OH 2) NaOH 3) H ₂ O 4) magnetic method 52. Which of the following are correct w.r.t D_2O ? 1) It can be used as moderator 2) Its m.p. is 3.82^0 C 3) Its b.p. is 101.42^0 C 4) All of these 53. 0.5 molal aqueous solutions of each of NaCl, BaCl ₂ and AlCl ₃ have boiling points T_1 , T_2 and T_3 respectively. Which of the following is correct? 1) $T_1 > T_2 > T_3$ 2) $T_3 > T_2 > T_1$ 3) $T_2 > T_1 > T_3$ 4) $T_1 > T_3 > T_2$ 54. i) $P + Q \rightleftharpoons A(fast)$ ii) $A + R \rightarrow B(slow)$ iii) $B + Q \rightarrow S + T(fast)$ are the elementary steps of the reactions, $2P + Q + 2R \rightarrow S + T$ The rate law of the reaction is: 1) $\mathbf{r} = \mathbf{k} [P] [Q]$ 2) $\mathbf{r} = \mathbf{k} [P]^2 [Q] [R]^3$ 3) $\mathbf{r} = \mathbf{k} [P]^{1/2} [Q][R]^{1/3}$ 4) $\mathbf{r} = \mathbf{k} [P][Q][R]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is $1 > K_2 + K_3 + K_4 + K_4 + K_4 + K_5 $		•						
1) NH ₄ OH 2) NaOH 3) H ₂ O 4) magnetic method 52. Which of the following are correct w.r.t D ₂ O? 1) It can be used as moderator 2) Its m.p. is 3.82° C 3) Its b.p. is 101.42° C 4) All of these 53. 0.5 molal aqueous solutions of each of NaCl, BaCl ₂ and AlCl ₃ have boiling points T ₁ , T ₂ and T ₃ respectively. Which of the following is correct? 1) $T_1 > T_2 > T_3$ 2) $T_3 > T_2 > T_1$ 3) $T_2 > T_1 > T_3$ 4) $T_1 > T_3 > T_2$ 54. i) $P + Q \rightleftharpoons A(fast)$ ii) $A + R \rightarrow B(slow)$ iii) $B + Q \rightarrow S + T(fast)$ are the elementary steps of the reactions, $2P + Q + 2R \rightarrow S + T$ The rate law of the reaction is: 1) $\mathbf{r} = \mathbf{k} [\mathbf{P}] [\mathbf{Q}]$ 2) $\mathbf{r} = \mathbf{k} [\mathbf{P}]^2 [\mathbf{Q}] [\mathbf{R}]^3$ 3) $\mathbf{r} = \mathbf{k} [\mathbf{P}]^{1/2} [\mathbf{Q}] [\mathbf{R}]^{1/3}$ 4) $\mathbf{r} = \mathbf{k} [\mathbf{P}] [\mathbf{Q}] [\mathbf{R}]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) K_2HgI_4 2) $H_2N - Hg - O - Hg - I$ 3) $Ca_3P_2 + CaC_2$ 4) $(NH_4)_2 MoO_4$				-				
52. Which of the following are correct w.r.t D_2O ? 1) It can be used as moderator 2) Its m.p. is $3.82^{\circ}C$ 3) Its b.p. is $101.42^{\circ}C$ 4) All of these 53. 0.5 molal aqueous solutions of each of NaCl, BaCl ₂ and AlCl ₃ have boiling points T_1 , T_2 and T_3 respectively. Which of the following is correct? 1) $T_1 > T_2 > T_3$ 2) $T_3 > T_2 > T_1$ 3) $T_2 > T_1 > T_3$ 4) $T_1 > T_3 > T_2$ 54. i) $P + Q \rightleftharpoons A(fast)$ ii) $A + R \rightarrow B(slow)$ iii) $B + Q \rightarrow S + T(fast)$ are the elementary steps of the reactions, $2P + Q + 2R \rightarrow S + T$ The rate law of the reaction is: 1) $\mathbf{r} = \mathbf{k} [\mathbf{P}] [\mathbf{Q}]$ 2) $\mathbf{r} = \mathbf{k} [\mathbf{P}]^2 [\mathbf{Q}] [\mathbf{R}]^3$ 3) $\mathbf{r} = \mathbf{k} [\mathbf{P}]^{1/2} [\mathbf{Q}] [\mathbf{R}]^{1/3}$ 4) $\mathbf{r} = \mathbf{k} [\mathbf{P}] [\mathbf{Q}] [\mathbf{R}]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) $K_2 H g I_4$ 2) $H_2 N - H g - O - H g - I$ 3) $Ca_3 P_2 + CaC_2$ 4) $(NH_4)_2 MoO_4$	51.	3						
1) It can be used as moderator 3) Its b.p. is $101.42^{\circ}C$ 4) All of these 53. 0.5 molal aqueous solutions of each of NaCl, BaCl ₂ and AlCl ₃ have boiling points T_1 , T_2 and T_3 respectively. Which of the following is correct? 1) $T_1 > T_2 > T_3$ 2) $T_3 > T_2 > T_1$ 3) $T_2 > T_1 > T_3$ 4) $T_1 > T_3 > T_2$ 54. i) $P + Q \rightleftharpoons A(fast)$ ii) $A + R \rightarrow B(slow)$ iii) $B + Q \rightarrow S + T(fast)$ are the elementary steps of the reactions, $2P + Q + 2R \rightarrow S + T$ The rate law of the reaction is: 1) $\mathbf{r} = \mathbf{k}[\mathbf{P}][\mathbf{Q}]$ 2) $\mathbf{r} = \mathbf{k}[\mathbf{P}]^2[\mathbf{Q}][\mathbf{R}]^3$ 3) $\mathbf{r} = \mathbf{k}[\mathbf{P}]^{1/2}[\mathbf{Q}][\mathbf{R}]^{1/3}$ 4) $\mathbf{r} = \mathbf{k}[\mathbf{P}][\mathbf{Q}][\mathbf{R}]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) K_2HgI_4 2) $H_2N - Hg - O - Hg - I$ 3) $Ca_3P_2 + CaC_2$ 4) $(NH_4)_2 MoO_4$		4		4	4) magnetic method			
3) Its b.p. is 101.42°C 4) All of these 53. 0.5 molal aqueous solutions of each of NaCl, BaCl ₂ and AlCl ₃ have boiling points T ₁ , T ₂ and T ₃ respectively. Which of the following is correct? 1) T ₁ > T ₂ > T ₃ 2) T ₃ > T ₂ > T ₁ 3) T ₂ > T ₁ > T ₃ 4) T ₁ > T ₃ > T ₂ 54. i) P+Q \rightleftharpoons A(fast) ii) A+R \rightarrow B(slow) iii) B+Q \rightarrow S+T (fast) are the elementary steps of the reactions, $2P+Q+2R \rightarrow S+T$ The rate law of the reaction is: 1) $\mathbf{r} = \mathbf{k} [\mathbf{P}] [\mathbf{Q}]$ 2) $\mathbf{r} = \mathbf{k} [\mathbf{P}]^2 [\mathbf{Q}] [\mathbf{R}]^3$ 3) $\mathbf{r} = \mathbf{k} [\mathbf{P}]^{1/2} [\mathbf{Q}] [\mathbf{R}]^{1/3}$ 4) $\mathbf{r} = \mathbf{k} [\mathbf{P}] [\mathbf{Q}] [\mathbf{R}]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) $\mathbf{K}_2 \mathbf{H} \mathbf{g} \mathbf{I}_4$ 2) $\mathbf{H}_2 \mathbf{N} - \mathbf{H} \mathbf{g} - \mathbf{O} - \mathbf{H} \mathbf{g} - \mathbf{I}$ 3) $\mathbf{Ca}_3 \mathbf{P}_2 + \mathbf{Ca} \mathbf{C}_2$ 4) $(\mathbf{NH}_4)_2 \mathbf{MoO}_4$	52.	-						
53. 0.5 molal aqueous solutions of each of NaCl, BaCl ₂ and AlCl ₃ have boiling points T_1 , T_2 and T_3 respectively. Which of the following is correct? 1) $T_1 > T_2 > T_3$ 2) $T_3 > T_2 > T_1$ 3) $T_2 > T_1 > T_3$ 4) $T_1 > T_3 > T_2$ 54. i) $P + Q \rightleftharpoons A(fast)$ ii) $A + R \rightarrow B(slow)$ iii) $B + Q \rightarrow S + T(fast)$ are the elementary steps of the reactions, $2P + Q + 2R \rightarrow S + T$ The rate law of the reaction is: 1) $\mathbf{r} = \mathbf{k} \ [\mathbf{P}] \ [\mathbf{Q}]$ 2) $\mathbf{r} = \mathbf{k} \ [\mathbf{P}]^2 \ [\mathbf{Q}] \ [\mathbf{R}]^3$ 3) $\mathbf{r} = \mathbf{k} \ [\mathbf{P}]^{1/2} \ [\mathbf{Q}] \ [\mathbf{R}]^{1/3}$ 4) $\mathbf{r} = \mathbf{k} \ [\mathbf{P}] \ [\mathbf{Q}] \ [\mathbf{R}]$ 55. \mathbf{NH}_3 gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) $\mathbf{K}_2 \mathbf{H} \mathbf{g} \mathbf{I}_4$ 2) $\mathbf{H}_2 \mathbf{N} - \mathbf{H} \mathbf{g} - \mathbf{O} - \mathbf{H} \mathbf{g} - \mathbf{I}$ 3) $\mathbf{Ca}_3 P_2 + \mathbf{Ca} \mathbf{C}_2$ 4) $(\mathbf{NH}_4)_2 \mathbf{MoO}_4$				-				
and T_3 respectively. Which of the following is correct? $1)T_1\!>\!T_2\!>\!T_3\qquad 2)T_3\!>\!T_2\!>\!T_1\qquad 3)T_2\!>\!T_1\!>\!T_3\qquad 4)T_1\!>\!T_3\!>\!T_2$ 54. i) $P\!+\!Q \rightleftharpoons A(fast)$ ii) $A\!+\!R \to B(slow)$ iii) $B\!+\!Q \to S\!+\!T(fast)$ are the elementary steps of the reactions, $2P\!+\!Q\!+\!2R \to S\!+\!T$ The rate law of the reaction is: $1)\mathbf{r} = \mathbf{k}[\mathbf{P}][\mathbf{Q}]\qquad 2)\mathbf{r} = \mathbf{k}[\mathbf{P}]^2[\mathbf{Q}][\mathbf{R}]^3 3)\mathbf{r} = \mathbf{k}[\mathbf{P}]^{1/2}[\mathbf{Q}][\mathbf{R}]^{1/3} 4)\mathbf{r} = \mathbf{k}[\mathbf{P}][\mathbf{Q}][\mathbf{R}]$ 55. $N\!H_3$ gives brown precipitate with Nessler's reagent. The formula of brown compound is $1)K_2HgI_4\qquad 2)H_2N\!-\!Hg\!-\!O\!-\!Hg\!-\!I$ 3) $Ca_3P_2\!+\!CaC_2\qquad 4)(N\!H_4)_2MoO_4$		-		•				
1) $T_1 > T_2 > T_3$ 2) $T_3 > T_2 > T_1$ 3) $T_2 > T_1 > T_3$ 4) $T_1 > T_3 > T_2$ 54. i) $P + Q \rightleftharpoons A(fast)$ ii) $A + R \rightarrow B(slow)$ iii) $B + Q \rightarrow S + T(fast)$ are the elementary steps of the reactions, $2P + Q + 2R \rightarrow S + T$ The rate law of the reaction is: 1) $\mathbf{r} = \mathbf{k} [\mathbf{P}] [\mathbf{Q}]$ 2) $\mathbf{r} = \mathbf{k} [\mathbf{P}]^2 [\mathbf{Q}] [\mathbf{R}]^3$ 3) $\mathbf{r} = \mathbf{k} [\mathbf{P}]^{1/2} [\mathbf{Q}] [\mathbf{R}]^{1/3}$ 4) $\mathbf{r} = \mathbf{k} [\mathbf{P}] [\mathbf{Q}] [\mathbf{R}]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) $K_2 H g I_4$ 2) $H_2 N - H g - O - H g - I$ 3) $Ca_3 P_2 + Ca C_2$ 4) $(NH_4)_2 MoO_4$	53.							
ii) $A+R \rightarrow B(slow)$ iii) $B+Q \rightarrow S+T(fast)$ are the elementary steps of the reactions, $2P+Q+2R \rightarrow S+T$ The rate law of the reaction is: 1) $\mathbf{r} = \mathbf{k} \ [\mathbf{P}] \ [\mathbf{Q}]$ 2) $\mathbf{r} = \mathbf{k} \ [\mathbf{P}]^2 \ [\mathbf{Q}] \ [\mathbf{R}]^3$ 3) $\mathbf{r} = \mathbf{k} \ [\mathbf{P}]^{1/2} \ [\mathbf{Q}] \ [\mathbf{R}]^{1/3}$ 4) $\mathbf{r} = \mathbf{k} \ [\mathbf{P}] \ [\mathbf{Q}] \ [\mathbf{R}]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) $\mathbf{K}_2 \mathbf{H} \mathbf{g} \mathbf{I}_4$ 2) $\mathbf{H}_2 \mathbf{N} - \mathbf{H} \mathbf{g} - \mathbf{O} - \mathbf{H} \mathbf{g} - \mathbf{I}$ 3) $\mathbf{Ca}_3 \mathbf{P}_2 + \mathbf{Ca} \mathbf{C}_2$ 4) $(\mathbf{NH}_4)_2 \mathbf{MoO}_4$					4) $T_1 > T_3 > T_2$			
iii) $B+Q \rightarrow S+T(fast)$ are the elementary steps of the reactions, $2P+Q+2R \rightarrow S+T$ The rate law of the reaction is: 1) $\mathbf{r} = \mathbf{k} [\mathbf{P}] [\mathbf{Q}]$ 2) $\mathbf{r} = \mathbf{k} [\mathbf{P}]^2 [\mathbf{Q}] [\mathbf{R}]^3$ 3) $\mathbf{r} = \mathbf{k} [\mathbf{P}]^{1/2} [\mathbf{Q}] [\mathbf{R}]^{1/3}$ 4) $\mathbf{r} = \mathbf{k} [\mathbf{P}] [\mathbf{Q}] [\mathbf{R}]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) $\mathbf{K}_2 \mathbf{H} \mathbf{g} \mathbf{I}_4$ 2) $\mathbf{H}_2 \mathbf{N} - \mathbf{H} \mathbf{g} - \mathbf{O} - \mathbf{H} \mathbf{g} - \mathbf{I}$ 3) $\mathbf{Ca}_3 \mathbf{P}_2 + \mathbf{Ca} \mathbf{C}_2$ 4) $(\mathbf{N} \mathbf{H}_4)_2 \mathbf{MoO}_4$	54.	$i) P+Q \rightleftharpoons A(fast)$						
are the elementary steps of the reactions, $2P+Q+2R \rightarrow S+T$ The rate law of the reaction is: $1) \ \mathbf{r} = \mathbf{k} \ [P] \ [Q] \qquad 2) \ \mathbf{r} = \mathbf{k} \ [P]^2 \ [Q] \ [R]^3 \qquad 3) \ \mathbf{r} = \mathbf{k} \ [P]^{1/2} \ [Q] \ [R]^{1/3} \qquad 4) \ \mathbf{r} = \mathbf{k} \ [P] \ [Q] \ [R]$ 55. $NH_3 \ \text{gives brown precipitate with Nessler's reagent. The formula of brown compound is}$ $1) \ K_2 Hg I_4 \qquad \qquad 2) \ H_2 N - Hg - O - Hg - I$ $3) \ Ca_3 P_2 + Ca C_2 \qquad 4) \ (NH_4)_2 \ MoO_4$		ii) $A + R \rightarrow B(slow)$)					
$2P+Q+2R \rightarrow S+T$ The rate law of the reaction is: 1) $\mathbf{r}=\mathbf{k}[P][Q]$ 2) $\mathbf{r}=\mathbf{k}[P]^2[Q][R]^3$ 3) $\mathbf{r}=\mathbf{k}[P]^{1/2}[Q][R]^{1/3}$ 4) $\mathbf{r}=\mathbf{k}[P][Q][R]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) K_2HgI_4 2) $H_2N-Hg-O-Hg-I$ 3) $Ca_3P_2+CaC_2$ 4) $(NH_4)_2MoO_4$		iii) $B+Q \rightarrow S+T(fast)$						
$2P+Q+2R \rightarrow S+T$ The rate law of the reaction is: 1) $\mathbf{r}=\mathbf{k}[P][Q]$ 2) $\mathbf{r}=\mathbf{k}[P]^2[Q][R]^3$ 3) $\mathbf{r}=\mathbf{k}[P]^{1/2}[Q][R]^{1/3}$ 4) $\mathbf{r}=\mathbf{k}[P][Q][R]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) K_2HgI_4 2) $H_2N-Hg-O-Hg-I$ 3) $Ca_3P_2+CaC_2$ 4) $(NH_4)_2MoO_4$		are the elementary steps of the reactions,						
The rate law of the reaction is: 1) $\mathbf{r} = \mathbf{k} [\mathbf{P}] [\mathbf{Q}]$ 2) $\mathbf{r} = \mathbf{k} [\mathbf{P}]^2 [\mathbf{Q}] [\mathbf{R}]^3$ 3) $\mathbf{r} = \mathbf{k} [\mathbf{P}]^{1/2} [\mathbf{Q}] [\mathbf{R}]^{1/3}$ 4) $\mathbf{r} = \mathbf{k} [\mathbf{P}] [\mathbf{Q}] [\mathbf{R}]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) $K_2 H g I_4$ 2) $H_2 N - H g - O - H g - I$ 3) $Ca_3 P_2 + Ca C_2$ 4) $(NH_4)_2 MoO_4$								
1) $\mathbf{r} = \mathbf{k} [\mathbf{P}] [\mathbf{Q}]$ 2) $\mathbf{r} = \mathbf{k} [\mathbf{P}]^2 [\mathbf{Q}] [\mathbf{R}]^3$ 3) $\mathbf{r} = \mathbf{k} [\mathbf{P}]^{1/2} [\mathbf{Q}] [\mathbf{R}]^{1/3}$ 4) $\mathbf{r} = \mathbf{k} [\mathbf{P}] [\mathbf{Q}] [\mathbf{R}]$ 55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) $K_2 HgI_4$ 2) $H_2 N - Hg - O - Hg - I$ 3) $Ca_3 P_2 + CaC_2$ 4) $(NH_4)_2 MoO_4$								
55. NH ₃ gives brown precipitate with Nessler's reagent. The formula of brown compound is 1) K_2HgI_4 2) $H_2N-Hg-O-Hg-I$ 3) $Ca_3P_2+CaC_2$ 4) $(NH_4)_2MoO_4$		1) $r = k [P] [Q]$	2) $r = k [P]^{2} [Q] [R]^{3}$	3) $r = k[P]^{1/2}[Q][R]^{1/3}$	4) $r = k[P][Q][R]$			
3) $Ca_3P_2 + CaC_2$ 4) $(NH_4)_2 MoO_4$	55.							
. , , , , ,		$1) K_{2}HgI_{4}$		2) $H_2N - Hg - O - Hg$	g-I			
POUCH		$3) Ca_3P_2 + CaC_2$		4) $\left(NH_4\right)_2 MoO_4$				
POUCH								
			DOT:	СП				


In which of the following molecules/ions are all the bonds not equal?					
1) XeF ₄	2) BF ₄	3) SF ₄	4) SiF ₄		
If $P > \Delta_0$, the d	⁴ is represented as				
1) $t_{2g}^{211}e_{g}^{0}$	$2)t_{2g}^{111}e_{g}^{1}$	$3) t_{2g}^0 e_g^{22}$	4) $t_{2g}^{1} e_{g}^{21}$		
		-			
	_				
•		•	2		
	sub shell occurs in Cu	SO ₄ (anhydrous) and	absorption of orange red light	t	
-	sub shell occurs in CuS	SO ₄ .5H ₂ O and absorpt	ion of orange-red light takes p	lace	
p-type semico					
1) As	/ 1	3) <i>In</i>	4) <i>Sb</i>		
Buna-N synthe	tic rubber is a copoly	mer of			
1) $CH_2 = CH - CH = CH_2$ and $C_6H_5CH = CH_2$					
$2) CH_2 = CH - CH$	CN and $CH_2 = CH - C$	$CH = CH_2$			
3) $CH_2 = CH - CH$	$CN \text{ and } CH_2 = CH - C$	$C = CH_2$			
		'H			
		3			
	Cl				
4) $CH_2 = CH - CH$	$\overset{1}{C} = CH_2$ and $CH_2 = CH_2$	$H - CH = CH_2$			
. 0.24 g of a volatile substance displaced 53.78 mL of air at STP. The molecular mass of the					
		2) 50	4) 100		
1) 24g	2) 53.78g	3) 50g	4) 100g		
		ROUGH			
		ROUGH			
	1) XeF_4 If $P > \Delta_0$, the d 1) $t_{2g}^{211} e_g^0$ CuSO ₄ . H_2 O is exists as Cu^{2+} i 1) $CuSO_4$ (anhyo 3) Splitting of d-takes place 4) Splitting of d-Which one of top-type semico 1) As Buna-N synthe 1) $CH_2 = CH - C$ 2) $CH_2 = CH - C$ 3) $CH_2 = CH - C$ 4) $CH_2 = CH - C$ 4) $CH_2 = CH - C$	1) XeF_4 2) BF_4^- If $P > \Delta_0$, the d^4 is represented as 1) $t_{2g}^{211} e_g^0$ 2) $t_{2g}^{111} e_g^1$ CuSO ₄ . H ₂ O is blue in colour but an exists as Cu ²⁺ ion with one unpaired 1) $CuSO_4$ (anhydrous) absorbs white lift and its place 1) Splitting of d-sub shell occurs in Custakes place 4) Splitting of d-sub shell occurs in Custakes place 4) Splitting of d-sub shell occurs in Custakes place 4) Splitting of d-sub shell occurs in Custakes place 1) As 2) P Buna-N synthetic rubber is a copoly 1) $CH_2 = CH - CH = CH_2$ and $C_6H_5CH_2$ 2) $CH_2 = CH - CH = CH_2$ and $CH_2 = CH - CH_2$ 3) $CH_2 = CH - CH = CH_2$ and $CH_2 = CH - CH_2$ Cl 4) $CH_2 = CH - CH_2$ and $CH_2 = CH_2$ Cl 4) $CH_2 = CH_2 - CH_2$ and $CH_2 = CH_2$ Cl 4) $CH_2 = CH_2 - CH_2$ and $CH_2 = CH_2$ Cl O.24 g of a volatile substance displace of the substance is	1) XeF_4 2) BF_4^- 3) SF_4 If $P > \Delta_0$, the \mathbf{d}^4 is represented as 1) $t_{2g}^{211} e_g^0$ 2) $t_{2g}^{111} e_g^1$ 3) $t_{2g}^0 e_g^{22}$ CuSO ₄ . H ₂ O is blue in colour but anhydrous CuSO ₄ is wexists as Cu^{2+} ion with one unpaired electron the reasonable of the substance $t_2^{211} e_g^{211} $	If $P > \Delta_0$, the d ⁴ is represented as 1) $t_{211}^{21} e_g^0$ 2) $t_{211}^{111} e_g^1$ 3) $t_{2g}^0 e_g^{22}$ 4) $t_{2g}^1 e_g^{21}$ CuSO ₄ . H ₂ O is blue in colour but anhydrous CuSO ₄ is white though in both copper exists as Cu^{2+} ion with one unpaired electron the reason is : 1) CuSO ₄ (anhydrous) absorbs white light 2) CuSO ₄ . 5H ₂ O absorbs blue light 3) Splitting of d-sub shell occurs in CuSO ₄ (anhydrous) and absorption of orange red ligh takes place 4) Splitting of d-sub shell occurs in CuSO ₄ .5H ₂ O and absorption of orange-red light takes place 9. Splitting of d-sub shell occurs in CuSO ₄ .5H ₂ O and absorption of orange-red light takes place 9. Splitting of d-sub shell occurs in CuSO ₄ .5H ₂ O and absorption of orange-red light takes place 9. Splitting of d-sub shell occurs in CuSO ₄ .5H ₂ O and absorption of orange-red light takes place 9. Splitting of d-sub shell occurs in CuSO ₄ .5H ₂ O and absorption of orange-red light takes place 9. Splitting of d-sub shell occurs in CuSO ₄ .5H ₂ O and absorption of orange-red light takes place 9. Splitting of d-sub shell occurs in CuSO ₄ .5H ₂ O and absorption of orange-red light takes place 9. Splitting of d-sub shell occurs in CuSO ₄ .5H ₂ O and absorption of orange-red light takes place 9. Splitting of d-sub shell occurs in CuSO ₄ .5H ₂ O and absorption of orange-red light takes place 9. Splitting of d-sub shell occurs in CuSO ₄ .5H ₂ O and absorption of orange-red light takes place 9. Splitting of d-sub shell occurs in CuSO ₄ .5H ₂ O and absorption of orange-red light takes place 9. Splitting of d-sub shell occurs in CuSO ₄ .5H ₂ O and absorption of orange-red light takes place 9. Splitting of d-sub shell occurs in CuSO ₄ .5H ₂ O and absorption of orange-red light takes place 9. Splitting of d-sub shell occurs in CuSO ₄ .5H ₂ O and absorption of orange-red light takes place 9. Splitting of d-sub shell occurs in CuSO ₄ .5H ₂ O and absorption of orange-red light takes place 9. Splitting of d-sub shell occurs in CuSO ₄ .5H ₂ O and absorption of	


62. A fixed mass of a gas is subjected to transformation of states from K to L to M to N and back to K as shown



The pair of isochoric processes among the transformations of sates is

- 1) K to L and L to M 2) L to M and N to K 3) L to M and M to N 4) M to N and N to K
- 63. If fraction of space occupied in hcp is 'x' and in fcc is 'y', then
 - 1) x > y
- 2) x < y
- 3) x = y
- 4) uncertain
- 64. The energy of second Bohr's orbit in hydrogen atom is 328kJ mol⁻¹. The energy of the third Bohr's orbit of H is
- 1) -583.11kJ mol⁻¹ 2) -853.11kJ mol⁻¹ 3) -145.78 kJ mol⁻¹
- 4) -511.83kJ mol⁻¹
- 65. Which one of the following constitutes a group of the isoelectronic species?
- 1) N_2, O_2^-, NO^+, CO 2) C_2^{2-}, O_2^-, CO, NO 3) $NO^+, C_2^{2-}, CN^-, N_2$ 4) $CN^-, N_2, O_2^{2-}, C_2^{2-}$
- 66. In which of the following the experimental dipole moment is more than what is expected from theory?

4) All of these

67. The reaction,

 $C_6H_6(l) + \frac{15}{2}O_2(g) \longrightarrow 6CO_2(g) + 3H_2O(l)$ is spontaneous, then which of the following is correct?

- 1) $\Delta H > T\Delta S$
- 2) $\Delta H < T\Delta S$ 3) $\Delta H = T\Delta S$
- 4) $\Delta H > 0$ and $\Delta S > 0$
- 68. The dissociation equilibrium of a gas AB, can be represented as

$$2AB_2(g) \Longrightarrow 2AB(g) + B_2(g)$$

The degree of dissociation is 'x' and is small compared to 1. The expression relating the degree of dissociation (x) with equilibrium constant K_n and total pressure P is

- 1) $(2K_p/P)^{1/3}$
- 2) $(2K_p/P)^{1/2}$ 3) (K_p/P)
- 4) $\left(2K_{p}/P\right)$

69. The pH of water at 298 K is 7.0. If water is heated to 350 K, then

1) pH will decrease, water will become acidic

2) pH will remain same

3) pH will increase, water wil remain neutral

3) pH will decrease, water will remain neutral

70. 1 mole of each of A and B form an ideal solution of vapour pressure 100 mm Hg. Addition of 2 moles of B to it, decrease the vapour pressure by 20 mm Hg. Vapour pressures of A and B in pure state are respectively

1) 100 and 100 mm Hg

2) 100 and 80 mm Hg

3) 60 and 140 mm Hg

4) 140 and 60 mm Hg

71. A 4.0 molar aqueous solutio of NaCl is prepared and 500mL of this solution is electrolysed. This leads to the evolution of chlorine gas at one of the electrodes. The total number of moles of chlorine gas evolveed is

1) 0.5

2) 1.0

3) 2.0

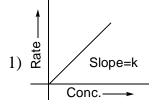
4) 3.0

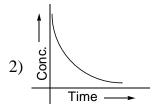
72. For the given three cells, which of the following is correct?

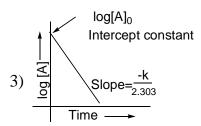
a)
$$\operatorname{Zn} \left| \operatorname{Zn}^{2+} (1.0M) \right| \left| \operatorname{Cu}^{2+} (1.0M) \right| \left| \operatorname{Cu}; \operatorname{E}_{1} (1.0M) \right|$$

$$a) \ \ Zn \Big| Zn^{^{2+}} \big(1.0M \big) \Big\| Cu^{^{2+}} \big(1.0M \big) \Big| Cu; E_1 \\ b) \ \ Zn \Big| Zn^{^{2+}} \big(1.0M \big) \Big\| Cu^{^{2+}} \big(10.0M \big) \Big| Cu; E_2 \\ b) \ \ Zn \Big| Zn^{^{2+}} \big(1.0M \big) \Big\| Cu^{^{2+}} \big(10.0M \big) \Big| Cu; E_2 \\ b) \ \ Zn \Big| Zn^{^{2+}} \big(1.0M \big) \Big\| Cu^{^{2+}} \big(10.0M \big) \Big| Cu; E_2 \\ b) \ \ Zn \Big| Zn^{^{2+}} \big(1.0M \big) \Big\| Cu^{^{2+}} \big(10.0M \big) \Big| Cu; E_2 \\ b) \ \ Zn \Big| Zn^{^{2+}} \big(1.0M \big) \Big\| Zn^{^{2+}} \big$$

c)
$$Zn|Zn^{2+}(10.0M)||Cu^{2+}(1.0M)|Cu;E_3|$$


1)
$$E_1 > E_2 > E_3$$
 2) $E_3 > E_2 > E_1$ 3) $E_2 > E_1 > E_3$ 4) $E_1 = E_2 = E_3$


2)
$$E_3 > E_2 > E$$


3)
$$E_2 > E_1 > E_2$$

4)
$$E_1 = E_2 = E_3$$

73. Which of the following graphs represents the first order reaction?

4) All represent 1st order reaction

74. A colloidal solution is subjected to an electrical field. The particles move towards anode. The coagulation of same sol is studied using NaCl, BaCl, and AlC, solutions. Their coasgulating power should be

1) $NaCl > BaCl_2 > AlCl_3$

2) $BaCl_2 > AlCl_3 > NaCl$

3) $AlCl_3 > BaCl_2 > NaCl$

4) BaCl₂ > NaCl > AlCl₃

75.	Which	is	wrongly	reported	2
15.	7 7 111 C11	10	widigiy	1 cpoi tcu	•

1) Spelter: impure zinc

2) Pig iron: impure iron

3) Sphalerite: ZnO

4) Blister Copper: Impure Copper

76. 100 cm³ of a sample of H₂O₂ gives 1000cm³ of O₂ at STP. The given sample is

- 1) 10 volume H_2O_2
- 2) 100 volume H₂O₂ 3) 10% H₂O₂ (W/V) 4) 2.786N

77. Cs,CO3 is highly soluble in water while BaCO3 quite sparingly soluble. Which of the following is correct?

- 1) Δ_{hvdr} . H dominates over lattice energy in case of Cs₂CO₃ while it is opposite in case of BaCO₃
- 2) Δ_{hydr} . H dominates over lattice energy in case of BaCO₃ while its opposite in case of Cs₂CO₃
- 3) K_{sp} of both Cs₂CO₃ and BaCO₃ is high
- 4) K_{sp} of both Cs₂CO₃ and BaCO₃ is low

78. Which of these is not a monomer for a high molecular mass silicon polymer?

- 1) Me₂SiCl
- 2) PhSiCl₂
- 3) MeSiCl₂
- 4) Me₂SiCl₂

79. In PO_4^{3-} , the bond order of P-O bond and formal charge on O – atom are, respectively

- 1) 0.25, -0.25
- 2) 0.50, -0.50
- 3) 1.25, -0.75
- 4) 0.75, -1.25

80. Chormite ore
$$(X) \xrightarrow{Na_2CO_3/air} (Y).X$$
 and Y are

1) Cr_2O_3 and $Na_2Cr_2O_7$

2) FeO.Cr₂O₃ and Na₂Cr₂O₇

3) FeO.Cr₂O₃ and Na₂CrO₄

4) Cr₂O₃ and Na₂CrO₄

81. Kjeldahl's method can not be used to estimate nitrogen in which of the following compounds?

2)
$$NH_2 = C - NH_2$$
 3) $NH_2 = NH_2$

4) All of these

82. Which of the following is the most stable carbocation

1)
$$O_2N$$
 $\overline{C}H_2$

2)
$$\langle \bigcirc \rangle$$
 $\overline{C}H_2$

3)
$$CH_3 \longrightarrow \overline{C}H_2$$

$$_{4)}$$
 CH₃O \overline{C} H₂

83. How are the following related?

$$CH_3 - CH_2 - CH_2 - N - CH_3$$
 $I)$
 I

$$_{\text{CH}_{3}}$$
— $_{\text{CH}_{2}}$ — $_{\text{N}}$ — $_{\text{CH}_{3}}$

III)
$$CH_3$$
— CH_2 — CH_2 — CH_2 — NH_2

- 1) I and II are position isomers
- 2) I and III are chain isomers

3) I, II and III are metamers

4) I, II and III are functional isomers

ROUGH

84. Ozonolysis is of

(using H₂O/Zn) produces

1)
$$HCHO + OHC - CH_2 - CH_2 - CH_2 - CHO$$
 2) $HCHO + OHC - CH_2 - \overset{O}{C} - CH_2 - CHO$

3)
$$CO_2 + H_2O + OHC - CH_2 - CH_2 - CH_2CHO$$
 4) $H_2O + CO_2 - OHC - CH_2 - CH_2 - CHO$

85. Which of the following is a chain initiation step in the chlorination of CH₄?

1)
$$Cl-Cl \xrightarrow{hv} 2\dot{C}l$$

2)
$$CH_4 + \dot{C}1 \longrightarrow \dot{C}H_3 + HC1$$

3)
$$\dot{C}H_3 + Cl_2 \longrightarrow CH_3Cl + \dot{C}l$$

4)
$$\dot{C}H_3 - \dot{C}H_3 \longrightarrow CH_3 - CH_3$$

86. Ethanal is treated with HCN and the resulting compound on hydrolysis followed by polymerisation gives 'X'. 'X' is used as / in

1) Orthopedic devices

2) Making capsules

3) Post operative stitches

4) Photo films

87. $CH_3 - CH(OH) - CH_2 - CH_3 - CH_3 - CH_3 - CH_2 - CHOH - CH_3 - CH_3$ can be distinguished by

- 1) HCl/ZnCl₂
- 2) Br₂ / CCl₄
- 3) $\text{KMnO}_4 / \text{H}^+$ 4) I_2 / NaOH

 $\overbrace{||} + Cl - CH_2 - CH_2 - CH_3 \xrightarrow{\quad AlCl_3 \quad} P \xrightarrow{\quad (i)O_2/\Delta \quad} Q + Phenol$

The major product P and Q are

89. Which will oxidise glucose to gluconic acid?

- 1) Br, water
- 2) Benedict solution
- 3) Tollens'reagent
- 4) All of these

90. In the titration of Oxalic acid solution with KMnO₄, the substance working as catalyst is

- 1) $KMnO_{4}$
- $2) \,\mathrm{MnO}_2$
- 3) Oxalic acid
- 4) MnSO₄

ROUGH