
			BOTANY			
91.	In the five kingdom classification, Chlamydomonas and Chlorella have been included in					
	1) Protista	2) Algae	3) Plantae	4) Monera		
92.	Maximum nut	ritional diversity is f	ound in which of the	following groups		
	1) Fungi	2) Animalia	3) Monera	4) Plantae		
93.	The given figu that	res show thalli of a liv	verwort. Identify the	parts labelled as A, B, C, D	in	
	2) A - sporoph	yte; B: rhizoids; C	b) b) C-Roots ; D-Archego - archegoniophore ; D - archegoniophore ; D	- antheridiophore		
	 3) A - gemma cup; B - rhizoids; C - archegoniophore; D - antheridiophore 4) A - gemma cup; B - roots; C - archegoniophore; D - antheridiophore 					
94.	Consider the following statements regarding gymnosperms and choose the correct option.					
	A) In gymnosperms, the male and female gametophytes have an independent existence					
	2) The multicellular female gametophyte is called endosperm					
	3) The gymnosperms are heterosporous					
	1) A and B are the	rue but C is false	2) A and C are t	rue but B is false		
	3) B and C are false but A is true 4) B and C are true but A is false					
95.	How many plants in the list given below have tap root modifications - Banyan, <i>Vanda</i> , Turnip, Sweet potato, Groundnut, Sugarcane, <i>Monstera</i>					
	1) Four	2) Two	3) Three	4) Five		
			ROUGH			

110. What is true about ribosomes

- 1) The prokaryotic ribosomes are 80 S, where "S" stands for sedimentation co-efficient
- 2) These are composed of ribonucleic acid and protein
- 3) These are found only in eukaryotic cells
- 4) These are self splicing introns of some ribozymes
- 111. If mitotic division is restricted in the G_1 -Phase of a cell cycle then the condition is known as
 - 1) S-Phase 2) G_2 -Phase 3) M-Phase 4) G_0 -Phase
- 112. In the following diagram of phloem identify the parts labelled as A, B, C, D

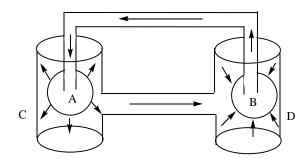
1) A - Sieve pore, B - Sieve tube element, C-companion cell, D-Phloem parenchyma

2) A - Sieve pore, B-sieve tube element, C-Phloem parenchyma, D-Companion cell

3) A-perforation plate, B-Sieve element, C-Phloem parenchyma, D-companion cell

4) A-Sieve pore, B-companion cell, C-sieve tube element, D- Phloem parenchyma

113. Which of the following statements is correct for secondary succession

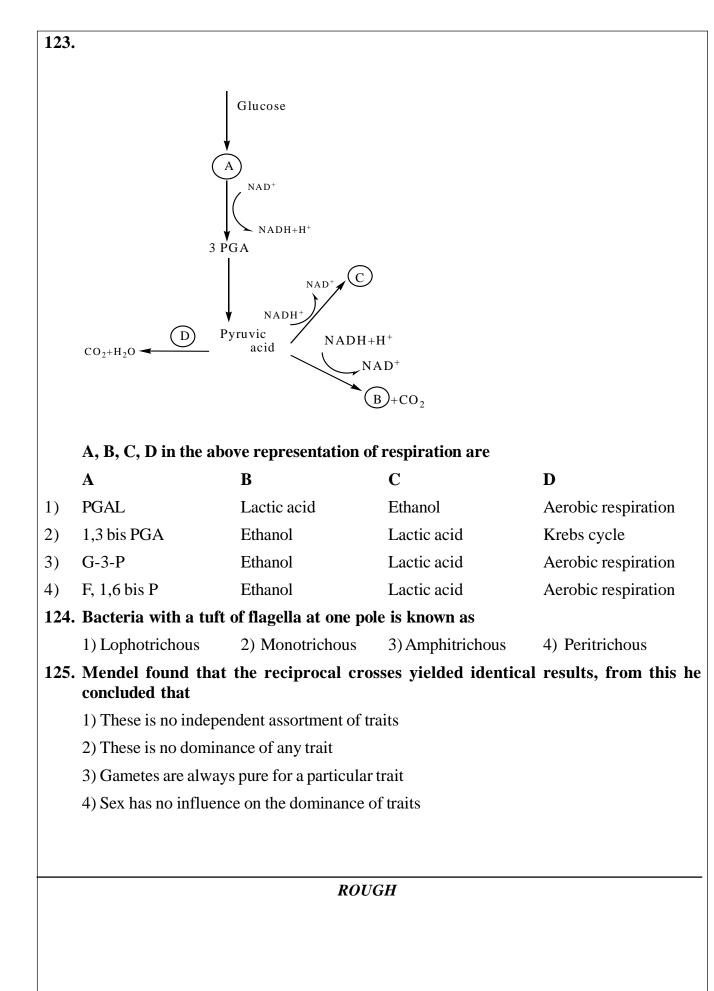

- 1) It begins on a bare rock 2) It occurs on a deforested site
- 3) It follows primary succession

4) It takes place slowly than that of primary succession

114. A cell is equally permeable to sucrose solution and NaCl solution. First the cell is put in 0.6 M sucrose solution, there is no change in size but when put in 0.6 M NaCl solution the size will

	1) Increase	2) Decrease	3) Remain same	4) Can't be said			
115.	5. Stomata open at night in						
	1) hydrophytes	2) Succulents	3) mesophytes	4) halophytes			
	ROUGH						

116. In the illustration of mass flow by Munch, identify A, B, C, D respectively


- 1) A- dilute solution, B- concentrated solution, C-sink, D- source
- 2) A- dilute solution, B- concentrated solution, C-source, D-sink
- 3) A-concentrated solution, B-dilute solution, C- sink, D-pure water
- 4) A- dilute solution, B-concentrated solution, C- sink, D-purewater

117. Which inhibitors are often used in the control of bacterial pathogens

- 1) Feed back inhibitors2) Non competitive inhibitors
- 3) Competitive inhibitors 4) Allosteric inhibitors
- 118. Photosynthesis in C₄ plants is relatively less effected by atmospheric CO₂ levels because
 - 1) Effective pumping of CO₂ into bundle sheath cells
 - 2) Rubisco in C_4 plants has higher affinity for CO_2
 - 3) Four carbon acids are primary initial $\rm CO_2$ fixation products
 - 4) The primary fixation of CO_2 is mediated via PEP carboxylase
- 119. During the operation of non-cyclic photophosphorylation, the immediate source of electrons to P700 is
 - 1) Cyt f 2) PC 3) PQ 4) Fd

ROUGH

120. The following diagram represents ATP synthesis through chemiosmosis. Identify A, B,				
C, D parts labelled in it				
	11	r+		
	н Г	NADP ⁺		
	A	C NADPH		
		\sim		
	H_2O			
	$\left(\begin{array}{c} H \\ H^{+} \end{array} \right)$			
	H H	H^+ Lumen		
Thu	lakoid			
men	abrane			
	Stroma			
	ADP	ATP		
А	В	С	D	
1) Photosystem	–I Cytochrome b and f	Photosystem –II	ATP synthase	
2) Photosystem	–II cytochrome b and f	Photosystem –I	CF_0	
3) Photosystem	-II Cytochrome b and f	Photosystem –I	ATP synthase	
4) Photosystem	–II ATP synthase	Photosystem-I	CFI	
121. Assimilatory power used in bundlesheath cells of maize for the net production of one glucose molecule is				
1) 30ATP, 12NADPH+H ⁺		2) 12ATP, 6NADPH+H ⁺		
3) 18ATP, 12NA	3) 18ATP, 12NADPH+H ⁺		4) 30ATP, 18NADPH+H ⁺	
122. ATP produced in the mitochondria per one glucose molecule is (both substrate phosphorylation and oxidation of all reduced coenzymes produced in cytoplasm and matrix)				
1) 34	2) 32	3) 30	4) 24	
	n	CH		
	ROU	GA		

ghtly linked genes on the same chromo ones far apart on the same chromosome enes loosely linked on the same chromo ghtly linked genes on the same chromo e history of biology human genome otechnology 2) Biomonitoring purpose of polymerase chain reaction NA modification	 e show very few recombinations hosome show similar recombinations b some show very few recombinations c project led to the development of 3) Bioinformatics 4) Biosystematics 		
t the correct statement from the one ghtly linked genes on the same chromosome ones far apart on the same chromosome enes loosely linked on the same chromo ghtly linked genes on the same chromo ghtly linked genes on the same chromo e history of biology human genome otechnology 2) Biomonitoring purpose of polymerase chain reaction NA modification NA replication the codons with their respective m –I JU GG CU	 and given below with respect to dihybrid cross posomes show higher recombinations and show very few recombinations bosome show similar recombinations bosome show very few recombinations c) DNA amplification d) DNA visualisation antinoacids and choose correct answer Colum –II bosome show -II bosome show -II		
ghtly linked genes on the same chromosome ones far apart on the same chromosome enes loosely linked on the same chromo ghtly linked genes on the same chromo e history of biology human genome otechnology 2) Biomonitoring purpose of polymerase chain reaction NA modification NA replication eh the codons with their respective m –I JU GG CU	 osomes show higher recombinations e show very few recombinations osome show similar recombinations osome show very few recombinations project led to the development of 3) Bioinformatics 4) Biosystematics on is 2) DNA amplification 4) DNA visualisation aminoacids and choose correct answer Colum –II Serine Methionine 		
enes far apart on the same chromosome enes loosely linked on the same chromo ghtly linked genes on the same chromo e history of biology human genome otechnology 2) Biomonitoring purpose of polymerase chain reaction NA modification NA replication th the codons with their respective m –I JU GG CU	 e show very few recombinations nosome show similar recombinations project led to the development of a) Bioinformatics bioinformatics bioinformatics 2) DNA amplification bioinformation colum –II 1. Serine bioinformation 		
enes loosely linked on the same chrom ghtly linked genes on the same chromo e history of biology human genome otechnology 2) Biomonitoring purpose of polymerase chain reaction NA modification NA replication th the codons with their respective m –I JU GG CU	 nosome show similar recombinations project led to the development of Bioinformatics Biosystematics 2) DNA amplification DNA visualisation aminoacids and choose correct answer Serine Methionine 		
ghtly linked genes on the same chromo e history of biology human genome otechnology 2) Biomonitoring purpose of polymerase chain reaction NA modification NA replication th the codons with their respective m –I JU GG CU	 a project led to the development of 3) Bioinformatics 4) Biosystematics a) DNA amplification b) DNA visualisation aminoacids and choose correct answer Colum –II Serine Methionine 		
e history of biology human genome otechnology 2) Biomonitoring purpose of polymerase chain reaction NA modification NA replication th the codons with their respective m –I JU GG CU	 project led to the development of Bioinformatics Biosystematics (a) DNA amplification DNA visualisation aminoacids and choose correct answer Colum –II Serine Methionine 		
 biotechnology 2) Biomonitoring biopurpose of polymerase chain reaction biopurpose of polymerase chain reacti	 3) Bioinformatics 4) Biosystematics on is 2) DNA amplification 4) DNA visualisation aminoacids and choose correct answer Colum –II 1. Serine 2. Methionine 		
purpose of polymerase chain reaction NA modification NA replication The codons with their respective In -I JU GG CU	on is DNA amplification DNA visualisation aminoacids and choose correct answer Colum –II Serine Methionine 		
VA modification VA replication The codons with their respective m –I JU GG CU	 2) DNA amplification 4) DNA visualisation aminoacids and choose correct answer Colum –II 1. Serine 2. Methionine 		
NA replication th the codons with their respective m –I JU GG CU	 4) DNA visualisation aminoacids and choose correct answer Colum –II 1. Serine 2. Methionine 		
th the codons with their respective m –I JU GG CU	aminoacids and choose correct answer Colum –II 1. Serine 2. Methionine		
m –I JU GG CU	Colum –II 1. Serine 2. Methionine		
JU GG CU	 Serine Methionine 		
GG CU	2. Methionine		
CU			
	3. Phenylalanine		
CC	-		
	4. Glycine		
JG	5. Proline		
3, B-4, C-1, D-5, E-2	2) A-3, B-1, D-4, D-5, E-2		
3, B-4, C-5, D-1, E-2	4) A-2, B-4, C-1, D-5, E-3		
Mutations which alter nucleotide sequence with in a gene are			
ame shift mutation	2) Base pair substitution		
th a and b	4) None of these		
Restriction endonucleases are enzymes which			
1) Make cut at specific positions within the DNA molecule			
2) Recognise a specific nucleotide sequence for binding of DNA ligase			
3) Restrict the action of the enzyme DNA polymerase			
4) Remove nucleotides from the ends of the DNA molecule			
ROUGH			
1 0 5	ke cut at specific positions within the cognise a specific nucleotide sequenc strict the action of the enzyme DNA p nove nucleotides from the ends of th		

133. Which of the following is a wrong match for a microbe and its industrial product1) Yeast - statins2) Acetobacter aceti - acetic acid						
	3) Clostridium bu	tylicum - lactic acid	4) Aspergillus nig	er - citric acid		
134.	134. <i>Bacillus thuringiensis</i> forms protein crystals which contain insecticidal protein. This protein					
	1) Is coded by several genes including the gene cry					
	2) Does not kill the carrier bacterium which is itself resistant to the toxin					
	3) Is activated by acidic pH in the foregut of insect pest					
	4) Binds with epit	helial cells of midgut in	the insect pest ultima	tely killing it		
135.	-	lowing is a eukaryotic	-			
	1) Nostoc	2) NPV	3) Rhizobium	4) Glomus		
	,	,	- /	,		
		ROU	U GH			