
46.	X and Y are two crystalline substances both having cubic unit cells. The ratio of molecular masses is $1:2$. The ratio of 'a' parameters is $1:2$. The ratio of number of formula units (Z) is $1:4$. The ratio of their densities is				
	1) 4:1	2) 1:1	3) 1:2	4) 1 : 4	
47.	The complex [Co(N	$\left[\left(H_{3}\right)_{6}\right]^{3+}$ is an inner orbi	ital complex whereas th	e $\left[\operatorname{CoF}_{6}\right]^{3-}$ is an outer orbital	
	_	per of unpaired electron	_		
40	1) Zero and 4	2) 4 and 4	3) 6 and 2	4) 3 and 4	
48.	8. A hydrocarbon with molecular formula C_4H_6 reacts with bromine readily and gives a red precipitat				
	with ammoniacal Cu ₂ Cl ₂ . On treatment with dilute H ₂ SO ₄ Containing HgSO ₄ gives 2- butanone. The hydrocarbon is				
	1) 2- Butyne	2) 1 – Butene	3) 1- butyne	4) Cyclobutene	
49.	In $C \stackrel{a}{=} C = C \stackrel{b}{=} C =$	c C C C C C , the strong	gest C - C single bond i	s	
	1) b	2) a	3) c	4) d	
50.	One molal solution of K_x [Fe (CN) $_6$] is isotonic with 4 molal urea solution. The degree of dissociation of potassium Iron cyanide is one. Then the value of 'x' is				
	1) 4	2) 3	3) 2	4) 1	
51.	The standard poten	tial for the electrode M	InO_4^-/MnO_2 in solution	n is	
	Given $E_{MnO_4^-/Mn^{+2}}^o = 1.51V$ and $E_{MnO_2/Mn^{+2}}^o = 1.23V$				
	1) - 1.70 V	2) + 1.1 V	3) + 1.70 V	4) - 1.1V	
52.	The limiting molar or respectively. The ⁰ for		aCl, KBr and KCl are	126, 152 and 150Scm ² mol ⁻¹	
	1) 278 S cm ² mol ⁻¹	2) 176 S cm ² mol ⁻¹	3) 128 S cm ² mol ⁻¹	4) 302 S cm ² mol ⁻¹	
	ROUGH				

53.	$NaCl \xrightarrow{H_2SO_4} NaHSO_4 \xrightarrow{NaCl} Na_2SO_4$. Correct statement is				
	1) HCl is obtained in both steps		2) $T_1 < T_2$		
	3) HCl is dried using conc H_2SO_4		4) All of these	4) All of these	
54.	Number of configurational isomers for $(CH_3)_2 CH \cdot CH \cdot Cl \cdot CH = CHCl$				
	1) 2	2) 3	3) zero	4) 4	
55.	Emf of the cell Pt , H $_2$ (1 atm) / H $^+$ (0.01) // Cl $_2$ (1atm) / Cl $^-$ (0.1M) , Pt . Given E° of				
	$Cl_2/Cl^- = 1.36V$				
	1) + 1.36V	2) + 1.54V	3) + 1.48V	4) + 1.12V	
56.	The electron affinit	y values of 3rd period	elements A, B, C and I	O are respectively -135, -60, -	
	200 and -348 KJ m	nole^{-1} . The outer config	guration of element 'B'	is	
	1) $3s^2 3p^1$	2) $3s^2 3p^4$	3) $3s^2 3p^3$	4) $3s^2 3p^2$	
57. In a face centered cubic lattice, atom 'A' occupies the corner positions and atom 'B the face center positions. If one atom of B is missing from one of the face centered p formula of the compound is			_		
	1) <i>A</i> ₂ <i>B</i>	2) A_2B_5	3) <i>AB</i> ₂	4) A_2B_2	
58.	In the roasting of ir	on pyrites, equivalent v	weight of iron pyrites is	1	
	1) $\frac{M}{11}$	$2) \frac{11M}{10}$	3) $\frac{M}{6}$	4) $\frac{6M}{5}$	
59.	59. $CH_2 = CH - CH(Br) - CH_3 \xrightarrow{alc. KOH} X(major). 'X' is$		najor). 'X' is		
	$1) CH_2 = C = CH - CH_3$		$2) CH_2 = CH - CH = CH_2$		
	$3) CH_3 - CH = CH - CH_3$		$4) CH_2 = CH - CH_2 - CH_3$		
60. Bond length and l		bond angle in ozone molecule is/are			
	1) 119°, 121pm	2) 117°, 148pm	3) 117°, 128pm	4) 111°, 128pm	
		ROI	U GH		
		100			

69. Name of the compound given below

$$CH_3$$
 CH_3
 CH_3

1) 5 - ethyl - 6 - methyl octane

2) 4 - ethy 1 - 3 - methyl octane

3) 3 - methyl - 4 ethyl octane

4) 2, 3 diethyl heptane

70. An alkene on ozonolysis gives isobutyraldehyde only. The alkene is

1) 2, 5 dimethyl hex - 3 ene

2) 3, 4 dimethyl hex - 3 ene

3) 2, 3 dimethyl but - 2 ene

4) 3 methyl pent - 1 - ene

71.
$$OH \longrightarrow A \xrightarrow{H^+} A \xrightarrow{H^+} B$$
. 'B' in the above sequence of reaction is

- 1) CH₃CHO
- 2) CH₃COCH₃
- 3) CH₃COOH
- 4) CH₃CHOHCH₃

72. Which of the following is fast dehydro brominated

73. Grignard reagent + $CdCl_2 \longrightarrow A + MgCl_2$

 $A + B \longrightarrow Butanone + CdCl_2$

A and B are respectively

1) (CH₃)₂Cd & C₂H₅COCl

2) CH₃MgCl & C₂H₅Cl

3) $(C_2H_5)_2Cd \& CH_3Cl$

4) CH₃COCl & (C₂H₅)₂Cd

- 74. A steel cylinder of 8 lit capacity contains H_2 gas at 12 atm. At the same temperature, how many cycle tubes of 4l capacity at 2 atm pressure can be filled by this gas?
 - 1) 12

2) 5

3) 10

- 4) 15
- 75. $CH_3COOH \xrightarrow{SOCl_2} A \xrightarrow{Benzene} B \xrightarrow{HCN} C \xrightarrow{H_2O} D$

In the following sequence of reactions, acetic acid yields D. The structure of 'D' is

$$OH$$

$$|$$

$$-C-CH_{3}$$

$$|$$

$$CN$$

- 76. Which of the following cannot undergo disproportionation?
 - 1) ClO-
- 2) ClO₂
- 3) ClO₃
- 4) ClO₄
- 77. Balance the following equation by oxidation number method

 $Cr_{(s)} + Pb(NO_3)_{2(aq)} \longrightarrow Cr(NO_3)_3 + Pb_{(s)}$, the coefficients of species in balanced reaction:

- 1) 3, 2, 3, 2
- 2) 2, 3, 2, 3
- 3) 2, 2, 3, 3
- 4) 3, 3, 2, 2
- 78. On passing H_2S gas into a solution containing both Cu^{2+} and Zn^{2+} ions in acidic medium, only CuS gets precipitated. This is because
 - 1) CuS more stable than ZnS

2) K_{sp} of CuS = Ksp of Zns

3) K_{sn} of $CuS < K_{sn}$ of ZnS

- 4) K_{sp} CuS > K_{sp} of ZnS
- 79. If the total energy of an electron in H atom is 3.4 eV then the kinetic energy and potential energy are respectively
 - 1) 6.8eV, -3.4eV
- 2) 6.8eV, 3.4eV
- 3) 3.4eV, -6.8eV
- 4) 3.4eV, -3.4eV

80.	0. The molecular formula of carbon compound 'X' is $C_4H_{10}O$. It liberates hydrogen a metal and gives turbidity immediately with Lucas Reagent. If the vapours of 'X' over hot copper the product obtained is				
	1) $CH_3 - CH_2 - O - CH_3 - CH_3 - CH_3 - O - CH_3 - CH_3 - O - $	$-CH_2-CH_3$	$2) CH_3CH_2 - CH_2$	– СНО	
	3) $CH_3 - C - CH_2 - CH_3 - $	-CH ₃	4) $CH_3 - C = CH_2$ CH_3		
81.	81. The value of K_P for the equillibrium of the reaction $N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$ is 2. Calculate percentage dissociation of N_2O_4 at a pressure of 0.5 atm				
	1) 71	2) 50	3) 25	4) 88	
82.	The pH of $10^{-10} M^{-1}$	The pH of $10^{-10} M$ $Mg \left(OH\right)_2$ solution will be			
	1) 10	2) 6	3) 4	4) 7.001	
83.	Consider the following	Consider the following reactions at $1000^{\circ}C$			
	1) $Zn_{(s)} + \frac{1}{2}O_2(g) \longrightarrow ZnO_{(s)}$; $\Delta G^{\circ} = -360 \text{KJ mole}^{-1}$				
	2) $C_{(s)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{(g)}$; $\Delta G^{\circ} = -460 \text{KJ mole}^{-1}$ Choose the correct statement at $1000^{\circ}C$				
	1) Zinc can be oxidised by CO3) Zinc can be reduced by CO		2) Zinc oxide can be reduced by C		
			4) Zinc can be reduced by C		
84.	Copper matte contain	ns			
	1) Cu_2S and Cu_2O	2) Cu_2O and FeS	3) Cu_2S and FeO	4) Cu_2S and FeS	
85.	In an adsorption experiment a graph between $\log \frac{x}{m}$ vs $\log P$ is found to be linear with a slope				
	of 45°. The Y - intercept was found to be 0.3010. What is $\frac{x}{m}$ if pressure is 6 bar (tan 45°=1				
and $0.3010 = \log 2$)					

1) 0.6

2) 2.8

3) 6

4) 12

86.	. 0.303 grams of an organic compound was analysed for nitrogen by Kjeldahl's method. Th					
	ammonia evolved was absorbed in 50ml of 0.1N H_2SO_4 . The excess acid required 25ml of 0.1					
	NaOH for neu	tralisation. The percenta	nge of nitrogen in the c	ompound		
	1) 11.55%	2) 23.3%	3) 44.6%	4) 18.4%		
87.	The Vanderw	vaal's constant 'b' is	times volum	e of the molecule		
	1) 4	2) 5	3) 2	4) 10		
88.	Which one of the following statements is correct					
	1) Chloroxyleno	ol is a tranquilizer	2) Sucralose is an antiseptic			
	3) Prontosil is an antimicrobial		4) Seconal is an	4) Seconal is an antipyretic		
89. The number of unpaired electrons present in the first excited state of		d state of chlorine atom is				
	1) 1	2) 3	3) 5	4) 2		
90. The total number of antibonding electrons in N_2 and O_2 molecules respectively is			olecules respectively is			
	1) 4, 8	2) 4, 6	3) 6, 8	4) 5, 8		
		j	ROUGH			