46. X and Y are two crystalline substances both having cubic unit cells. The ratio of molecular masses is $1: 2$. The ratio of 'a' parameters is $1: 2$. The ratio of number of formula units (Z) is $1: 4$. The ratio of their densities is
1) $4: 1$
2) $1: 1$
3) $1: 2$
4) $1: 4$
47. The complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is an inner orbital complex whereas the $\left[\mathrm{CoF}_{6}\right]^{3-}$ is an outer orbital complex. The number of unpaired electrons in these two complexes are respectively
1) Zero and 4
2) 4 and 4
3) 6 and 2
4) 3 and 4
48. A hydrocarbon with molecular formula $\mathrm{C}_{4} \mathrm{H}_{6}$ reacts with bromine readily and gives a red precipitate with ammoniacal $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$. On treatment with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ Containing HgSO_{4} gives 2- butanone. The hydrocarbon is
1) 2- Butyne
2) 1 -Butene
3) 1-butyne
4) Cyclobutene
49. In $C \underline{a}_{C}=C \underline{b}_{C}=C \underline{\underline{c}}_{C} \underline{d}_{C}$, the strongest $\mathbf{C}-\mathbf{C}$ single bond is
1) b
2) a
3) c
4) d
50. One molal solution of $K_{x}\left[F e(C N)_{6}\right]$ is isotonic with 4 molal urea solution. The degree of dissociation of potassium Iron cyanide is one. Then the value of ' x ' is
1) 4
2) 3
3) 2
4) 1
51. The standard potential for the electrode $\mathrm{MnO}_{4}^{-} / \mathrm{MnO}_{2}$ in solution is

Given $\mathrm{E}_{\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{+2}}^{\mathrm{o}}=1.51 \mathrm{~V}$ and $\mathrm{E}_{\mathrm{MnO}_{2} / \mathrm{Mn}^{+2}}^{\mathrm{o}}=1.23 \mathrm{~V}$

1) -1.70 V
2) +1.1 V
3) +1.70 V
4) - 1.1 V
52. The limiting molar conductivities \wedge^{0} for $\mathrm{NaCl}, \mathrm{KBr}$ and KCl are 126,152 and $150 \mathrm{Scm}^{2}$ mol $^{-1}$ respectively. The ${ }^{0}$ for NaBr is :
1) $278 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
2) $176 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
3) $128 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
4) $302 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
53. $\mathrm{NaCl} \xrightarrow[\mathrm{T}_{1}]{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{NaHSO}_{4} \xrightarrow[\mathrm{~T}_{2}]{\mathrm{NaCl}} \mathrm{Na}_{2} \mathrm{SO}_{4}$. Correct statement is
1) HCl is obtained in both steps
2) $T_{1}<T_{2}$
3) HCl is dried using conc $\mathrm{H}_{2} \mathrm{SO}_{4}$
4) All of these
54. Number of configurational isomers for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} . \mathrm{CH} . \mathrm{Cl} . \mathrm{CH}=\mathrm{CHCl}$
1) 2
2) 3
3) zero
4) 4
55. Emf of the cell $\mathrm{Pt}, \mathrm{H}_{2}(1 \mathrm{~atm}) / \mathrm{H}^{+}(0.01) / / \mathrm{Cl}_{2}(1 \mathrm{~atm}) / \mathrm{Cl}^{-}(0.1 \mathrm{M})$, Pt . Given E° of $\mathrm{Cl}_{2} / \mathrm{Cl}^{-}=1.36 \mathrm{~V}$
1) +1.36 V
2) +1.54 V
3) +1.48 V
4) +1.12 V
56. The electron affinity values of 3 rd period elements A, B, C and D are respectively -135, -60, 200 and $-348 \mathrm{KJ}^{2}$ mole ${ }^{-1}$. The outer configuration of element ' \mathbf{B} ' is
1) $3 s^{2} 3 p^{1}$
2) $3 s^{2} 3 p^{4}$
3) $3 s^{2} 3 p^{3}$
4) $3 s^{2} 3 p^{2}$
57. In a face centered cubic lattice, atom ' A ' occupies the corner positions and atom ' B ' occupies the face center positions. If one atom of B is missing from one of the face centered points. The formula of the compound is
1) $A_{2} B$
2) $A_{2} B_{5}$
3) $A B_{2}$
4) $A_{2} B_{2}$
58. In the roasting of iron pyrites, equivalent weight of iron pyrites is
1) $\frac{M}{11}$
2) $\frac{11 M}{10}$
3) $\frac{M}{6}$
4) $\frac{6 M}{5}$
59. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}(\mathrm{Br})-\mathrm{CH}_{3} \xrightarrow{\text { alc. } \mathrm{KOH}} \mathrm{X}$ (major). ' X ' is
1) $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}-\mathrm{CH}_{3}$
2) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
3) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
4) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
60. Bond length and bond angle in ozone molecule is/are
1) $119^{\circ}, 121 \mathrm{pm}$
2) $117^{\circ}, 148 \mathrm{pm}$
3) $117^{\circ}, 128 \mathrm{pm}$
4) $111^{\circ}, 128 \mathrm{pm}$
61. Absolute configuration of

1) $2 \mathrm{~S}, 3 \mathrm{R}$
2) $3 R, 2 S$
3) $2 R, 3 R$
4) $2 \mathrm{~S}, 3 \mathrm{~S}$
62. ' X ' along with liquid oxygen provide a tremendous thrust in rockets. Oxidation state of nitrogen in ' X ' is
1) -2
2) - 3
3) - 1
4) +1
63. The number of $p \pi-d \pi$ bonds present in XeO_{3} and XeO_{4} molecules respectively
1) 3,4
2) 4,2
3) 2,3
4) 3,2
64. 1,3 butadiene and styrene on polymerisation give
1) Bakelite
2) Terylene
3) Buna - S
4) Teflon
65. To a $25 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}_{2}$ solution, excess acidified solution of KI is added. The iodine liberated required $\mathbf{2 0 m l}$ of $\mathbf{0 . 3 M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. Strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is
1) $1.344 \mathrm{gr} /$ litre
2) $3.244 \mathrm{gr} /$ litre
3) $5.4 \mathrm{gr} /$ litre
4) $4.08 \mathrm{gr} /$ litre
66. The gas evolved on heating $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is
1) NH_{3}
2) N_{2}
3) $\mathrm{N}_{2} \mathrm{O}$
4) O_{2}
67. When HNO_{3} oxidizes I_{2}, the change in oxidation number of iodine is
a) 0 to +4
2) 0 to -5
3) 0 to +5
4) 0 to +3
68. Gabriel phthalimide synthesis is used for the preparation of
a) Primary aromatic amine
2) Primary aliphatic amine
c) Secondary amine
3) Tertiary amine
69. Name of the compound given below

1) 5-ethyl-6-methyl octane
2) 4-ethy 1-3-methyl octane
3) 3 - methyl-4 ethyl octane
4) 2,3 diethyl heptane
70. An alkene on ozonolysis gives isobutyraldehyde only. The alkene is
1) 2, 5 dimethyl hex - 3 ene
2) 3, 4 dimethyl hex-3 ene
3) 2, 3 dimethyl but - 2 ene
4) 3 methyl pent - 1 - ene
71.

1) $\mathrm{CH}_{3} \mathrm{CHO}$
2) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
3) $\mathrm{CH}_{3} \mathrm{COOH}$
4) $\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}$
72. Which of the following is fast dehydro brominated
1)

2)

3)

4)

73. Grignard reagent $+\mathbf{C d C l}_{2} \longrightarrow \mathbf{A}+\mathbf{M g C l}_{2}$
$\mathrm{A}+\mathrm{B} \longrightarrow$ Butanone $+\mathbf{C d C l}_{2}$
A and B are respectively

1) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cd} \& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COCl}$
2) $\mathrm{CH}_{3} \mathrm{MgCl} \& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
3) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Cd} \& \mathrm{CH}_{3} \mathrm{Cl}$
4) $\mathrm{CH}_{3} \mathrm{COCl} \&\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Cd}$
74. A steel cylinder of 8 lit capacity contains H_{2} gas at 12 atm . At the same temperature, how many cycle tubes of $\mathbf{4 l}$ capacity at 2 atm pressure can be filled by this gas?
1) 12
2) 5
3) 10
4) 15
75. $\mathbf{C H}_{3} \mathbf{C O O H} \xrightarrow{\mathrm{SOCl}_{2}} \mathbf{A} \xrightarrow[\text { anhyd. } \mathrm{AlCl}_{3}]{\text { Benzene }} \mathbf{B} \xrightarrow{\mathrm{HCN}} \mathbf{C} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathbf{D}$

In the following sequence of reactions, acetic acid yields D. The structure of ' D ' is
1)

2)

3)

4)

76. Which of the following cannot undergo disproportionation?

1) ClO^{-}
2) ClO_{2}^{-}
3) ClO_{3}^{-}
4) ClO_{4}^{-}
77. Balance the following equation by oxidation number method

$$
\mathrm{Cr}_{(s)}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(a q)} \longrightarrow \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{Pb}_{(s)} \text {, the coefficients of species in balanced reaction : }
$$

1) $3,2,3,2$
2) $2,3,2,3$
3) $2,2,3,3$
4) $3,3,2,2$
78. On passing $\mathrm{H}_{2} \mathrm{~S}$ gas into a solution containing both Cu^{2+} and $\mathbf{Z n}^{2+}$ ions in acidic medium, only CuS gets precipitated. This is because
1) CuS more stable than ZnS
2) K_{sp} of $\mathrm{CuS}=\mathrm{Ksp}$ of Zns
3) $\mathrm{K}_{\text {sp }}$ of $\mathrm{CuS}<\mathrm{K}_{\text {sp }}$ of ZnS
4) $\mathrm{K}_{\mathrm{sp}} \mathrm{CuS}>\mathrm{K}_{\mathrm{sp}}$ of ZnS
79. If the total energy of an electron in \mathbf{H} - atom is -3.4 eV then the kinetic energy and potential energy are respectively
1) $6.8 \mathrm{eV},-3.4 \mathrm{eV}$
2) $6.8 \mathrm{eV}, 3.4 \mathrm{eV}$
3) $3.4 \mathrm{eV},-6.8 \mathrm{eV}$
4) $3.4 \mathrm{eV},-3.4 \mathrm{eV}$
80. The molecular formula of carbon compound ' X ' is $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$. It liberates hydrogen gas with Na metal and gives turbidity immediately with Lucas Reagent. If the vapours of ' X ' are passed over hot copper the product obtained is
1) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
2) $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CHO}$
3)

4)

81. The value of K_{P} for the equillibrium of the reaction $N_{2} O_{4(g)} \rightleftharpoons 2 \mathrm{NO}_{2(g)}$ is 2 . Calculate the percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ at a pressure of 0.5 atm

1) 71
2) 50
3) 25
4) 88
82. The pH of $10^{-10} \mathrm{M} \operatorname{Mg}(\mathrm{OH})_{2}$ solution will be
1) 10
2) 6
3) 4
4) 7.001
83. Consider the following reactions at $1000^{\circ} \mathrm{C}$
1) $\mathrm{Zn}_{(s)}+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{ZnO}_{(s)} ; \Delta G^{\circ}=-360 \mathrm{KJ} \mathrm{mole}^{-1}$
2) $C_{(s)}+\frac{1}{2} \mathrm{O}_{2(g)} \longrightarrow \mathrm{CO}_{(g)} ; \Delta G^{\circ}=-460 \mathrm{KJ} \mathrm{mole}^{-1}$

Choose the correct statement at $1000^{\circ} \mathrm{C}$

1) Zinc can be oxidised by CO
2) Zinc oxide can be reduced by C
3) Zinc can be reduced by CO
4) Zinc can be reduced by C
84. Copper matte contains
1) $\mathrm{Cu}_{2} \mathrm{~S}$ and $\mathrm{Cu}_{2} \mathrm{O}$
2) $\mathrm{Cu}_{2} \mathrm{O}$ and FeS
3) $\mathrm{Cu}_{2} \mathrm{~S}$ and FeO
4) $\mathrm{Cu}_{2} \mathrm{~S}$ and FeS
85. In an adsorption experiment a graph between $\log \frac{x}{m} v \log P$ is found to be linear with a slope of 45°. The Y - intercept was found to be $\mathbf{0 . 3 0 1 0}$. What is $\frac{x}{m}$ if pressure is $\mathbf{6} \operatorname{bar}\left(\tan 45^{\circ}=1\right.$ and $0.3010=\log 2$)
1) 0.6
2) 2.8
3) 6
4) 12
86. 0.303 grams of an organic compound was analysed for nitrogen by Kjeldahl's method. The ammonia evolved was absorbed in 50 ml of $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$. The excess acid required 25 ml of 0.1 N NaOH for neutralisation. The percentage of nitrogen in the compound
1) 11.55%
2) 23.3%
3) 44.6%
4) 18.4%
87. The Vanderwaal's constant ' b ' is \qquad .times volume of the molecule
1) 4
2) 5
3) 2
4) 10
88. Which one of the following statements is correct
1) Chloroxylenol is a tranquilizer
2) Sucralose is an antiseptic
3) Prontosil is an antimicrobial
4) Seconal is an antipyretic
89. The number of unpaired electrons present in the first excited state of chlorine atom is
1) 1
2) 3
3) 5
4) 2
90. The total number of antibonding electrons in N_{2} and O_{2} molecules respectively is
1) 4,8
2) 4,6
3) 6,8
4) 5,8
